

Antenna Type Approval Laboratory University of Tehran

School of Electrical & Computer Eng., Kargar Ave. North, Tehran, Iran

Certificate of Measurement Conformance LQS-F5100200

Page 1 of 6

The instrument identified below has been individually calibrated in compliance with the following standard(s):

- ANSI/IEEE Std 686 2008 Radar Definitions, (Revision of IEEE Std 686-1997)
- ANSI/IEEE Std 145 1993, Definitions of Terms for Antennas;
- ANSI/IEEE Std 149 1979, Antenna Measurement Standards;

Environment: Laboratory was maintained in a temperature-controlled environment with ambient conditions from 19 to 25 C, relative humidity less than 60%. The device under test has been measured and calibrated inside a shielded pyramidal anechoic chamber, which has no known influences on measurement quality.

Test Type:

Response Measurement

Test Date:

July 22, 2014

DUT Identification:

Manufacturer:

ZARSIM

Model:

Device Type:

Serial Number / ID: SA-93-04-105 Coaxial Cable

Comments:

Impedance, Attenuation, Velocity Ratio

Main Equipment Used:

Make Agilent E8361C

PNA Series Network Analyzer, 10MHz - 67GHz

Calibration Date

Feb-2009

Technical Manager

Dr. Karim Mohammadpour-Aghdam

Director of the Lab. Prof. Reza Faraji-Dana

Attested and Issued on July 22, 2014

Test Date:

July 22, 2014

b.

Antenna Type-Approval

Laboratory

University of Tehran

Control

Antenna Type Approval Lab. University of Tehran

School of Electrical & Computer Eng., Kargar Ave. North, Tehran, Iran

Test report for Response Measurement
Manufactured: ZARSIM Model Number: --- Serial Number: SA-93-04-105

Real and Imaginary Part of the Characteristic Impedance of the Coaxial Cable:

• Real & Imaginary $\{Z_0\}$ $[\Omega]$:

• Real{Z₀} [Ω]:

Page: 3 of 6

Test Date: July 22, 2014

Antenna Type Approval Lab. University of Tehran

School of Electrical & Computer Eng., Kargar Ave. North, Tehran, Iran

Control Antenna Type-Appro Laboratory University of Tehran

Test report for Response Measurement
Manufactured: ZARSIM Model Number: --- Serial Number: SA-93-04-105

• Imaginary $\{Z_0\}$ $[\Omega]$:

Freq [MHz]	Impedance [Ω]
10	74.52-0.71i
100	73.81-2.08i
200	72.86-5.13i
300	72.35-7.80i
400	71.21-10.8i

Page: 4 of 6

Test Date: July 22, 2014

Antenna Type Approval Lab. University of Tehran

Manufactured: ZARSIM Model Number: --- Serial Number: SA-93-04-105

School of Electrical & Computer Eng., Kargar Ave. North, Tehran, Iran

Test report for Response Measurement

Control Antenna Type-App Laboratory University of Tehran

Attenuation of the Coaxial Cable:

Freq [MHz]	Attenuation [dB/km]
10	43.14
100	137.8
200	199.7
300	246.9
400	286.4

Page: 5 of 6

Test Date:

July 22, 2014

Antenna Type Approval Lab. University of Tehran

School of Electrical & Computer Eng., Kargar Ave. North, Tehran, Iran

Test report for Response Measurement Manufactured: ZARSIM Model Number: --- Serial Number: SA-93-04-105 Control

Antenna Type-Approval Laboratory

University of Tehran

Group Delay of the Coaxial Cable with the Length of 200 Meters:

Page: 6 of 6

Test Date: July 22, 2014

Control

Antenna Type-Approval Laboratory

University of Tehran

Antenna Type Approval Lab. University of Tehran

School of Electrical & Computer Eng., Kargar Ave. North, Tehran, Iran

Test report for Response Measurement

Manufactured: ZARSIM Model Number: --- Serial Number: SA-93-04-105

Calculation of Velocity Ratio:

Freq [MHz]	Group Delay [µs]	Velocity Ratio [µs]
20	1.0245	65.07%
150	1.0208	65.31%
300	1.0174	65.53%
400	1.0179	65.49%

$$\tau_g = \frac{1.0245 \text{ [µs]}}{200 \text{ [m]}} = 5.1 \text{ [ns]} \implies n = \tau_g \times c = 1.53$$

$$\implies \text{Velocity Ratio} = \frac{1}{1.53} \times 100 = 65.3 \%$$